

Revista Interdisciplinar da FARESE, v. 04, Ed. Esp. Anais da III Jornada Científica do Grupo Educacional FAVENI, p. 365-370, 2022 Submissão: 21/10/2022 • Aprovação: 14/12/2022

DIMENSIONAMENTO DE SISTEMA FOTOVOLTAICO PARA UMA PEQUENA PROPRIEDADE RURAL NO MUNICÍPIO DE SANTA MARIA DE JETIBÁ, ES, BRASIL

photovoltaic system for a small rural property in the Santa Maria de Jetibá municipality, ES, Brazil

Jamilly Gums Klisk¹, Geisiely do Espírito Santo², Lourena Lacerda Dias³, João Gabriel Andrade Dadalto⁴, Gemael Barbosa Lima⁵, Wanderson Paula Pinto⁶

- ¹Graduando em Engenharia Ambiental e Sanitária, Rua Jequitibá, nº 121, Centro, Santa Maria de Jetibá, ES, jamillygums@soufarese.com.br
- ² Graduando em Engenharia Ambiental e Sanitária, Rua Jequitibá, n° 121, Centro, Santa Maria de Jetibá, ES, geisielydoespiritosanto@soufarese.com.br
- ³ Graduando em Engenharia Ambiental e Sanitária, Rua Jequitibá, nº 121, Centro, Santa Maria de Jetibá, ES, lorenalacerda@soufarese.com.br.
- ⁴Graduando em Engenharia Ambiental e Sanitária, Rua Jequitibá, nº 121, Centro, Santa Maria de Jetibá, ES, joaogabriel@soufarese.com.br

⁵Professor da Farese, Rua Jequitibá, n° 121, Centro, Santa Maria de Jetibá, ES, gemaelbarbosalima@professorfarese.com.br ⁵Professor da Farese, Rua Jequitibá, n° 121, Centro, Santa Maria de Jetibá, ES,

wandersondepaulapinto@professorfarese.com.br

INTRODUÇÃO

Em países de dimensões continentais como o Brasil, por exemplo, há anos vem se discutindo a relação entre a produção de energia e desenvolvimento econômico, sobretudo como a escolha da matriz energética nacional, a saber: hidrelétrica, influencia no desenvolvimento econômico do país (ANDRADE, 2016).

Neste contexto, o Brasil encontra-se em um período de mudança em seu desenvolvimento econômico, investindo em energias renováveis no sentido de minimizar os impactos ambientais e no fortalecimento do desenvolvimento sustentável (BRONZATTI; NETO, 2008).

De acordo com o Balanço Energético de 2021 (ano base 2020) (EPE, 2021) o consumo de energia elétrica aumentou 4,05% em relação a 2020 devido às medidas de isolamento social imposta pela pandemia do Covid 19, a saber: distanciamento social e home office. Embora pouco mais de 84% da matriz energética brasileira seja renovável, a energia solar ainda possui uma pequena parcela da matriz energética, isto é, 9,8% do total (EPE, 2021). A partir desse cenário, pode-se inferir que o mercado de energia solar ainda tem muito espaço para crescimento.

Diante do exposto, o presente estudo tem por objetivo realizar dimensionamento de um sistema fotovoltaico de uma propriedade rural situada em Santa Maria de Jetibá, ES, BRASIL. Para isso, obteve-se dados de irradiação solar da região e de posse dos consumos registrados na residência foi realizado dimensionamento no número de placas solares fotovoltaicas.

MATERIAL E MÉTODOS

CARATERIZAÇÃO DA ÁREA DE ESTUDO

O município de Santa Maria de Jetibá está localizado na região Centro Serrana do estado do Espírito Santo, como mostra a Figura 1, a uma Latitude: 20° 1' 35" Sul, Longitude: 40° 44' 27" Oeste, limitando-se a oeste com o município de Afonso Cláudio, ao sul com Domingos Martins, a noroeste com Itarana, a leste com Santa Leopoldina e a nordeste com Santa Teresa (PMSB, 2018).

Legenda

Limite Territorial

Plano Municipal de Saneamento Básico
TED nº 03/2014

0 2.5 5 10 Km

Figura 1: Localização do Município de Santa Maria de Jetibá, ES.

Fonte: PMSB, 2018.

O município possui um clima temperado úmido, com verão ameno com estações de verão e inverno bem definidas, mas com o pico do verão com média mensal inferior a 22°C e sem estação seca ao longo do ano.

DADOS

Para dimensionamento das placas fotovoltaicas foi necessária a aquisição da irradiação solar média diária (kwh/m².dia) para o município de Santa Maria de Jetibá, ES, junto ao Centro de Referência para as Energias Solar e Eólica de S.Brito (CRESESB/CEPEL) a partir do sítio http://cresesb.cepel.br/index.php#data.

PROCEDIMENTO METODOLÓGICO

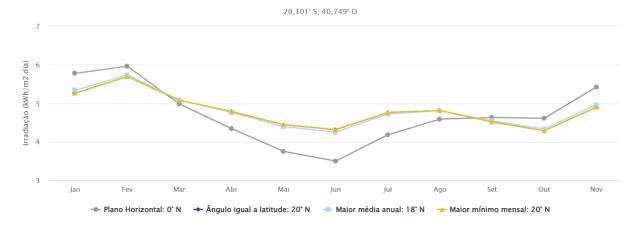
Estimativa do consumo de energia da residência.

Para a estimativa do consumo de energia da residência em questão foi usada a série história do consumo da residência por meio das contas de energias antigas disponíveis, isso é, de março de 2021 a fevereiro de 2022. A partir da referida série, consumo médio registrado que foi 549,42 kW/mês.

Cálculo da potência total

A potência total dos painéis foi calculada a partir das expressões a seguir:

$$Energia = Potência x Tempo (1)$$


$$Energia_{geração} = Potência\ Total_{pain\'eis}\ x\ Tempo_{exposição} \tag{2}$$

$$Potência\ Total_{pain\'eis} = \frac{Energia_{gera\~{c}\~{a}o}}{Tempo_{exposi\~{c}\~{a}o}xn_{rendimento}} \tag{3}$$

Definição da variável Tempo de Exposição:

O Tempo de Exposição é o tempo que os painéis ficarão expostos à radiação solar diariamente. Utilizando o conceito de Horas de Sol Pico (HSP) que se baseia na irradiação solar ao longo do dia, conforme a Figura 2. A partir da figura a seguir, HSP para acidade de Santa Maria de Jetibá ($HSP_{SMI} = 4,61 \text{ kwh/m}^2$. dia).

Figura 1: Irradiação solar no plano inclinado – Santa Maria de Jetibá, ES, Brasil.

Fonte: http://cresesb.cepel.br/index.php#localidade_11137, 2022.

Perdas de Energia:

O rendimento está associado às Perdas de Temperatura (variam de 7% a 18% e ocorrem devido o aquecimento dos painéis), Incompatibilidade Elétrica (variam de 1% a 2% e ocorrem quando as placas estão conectadas em série ou paralelo, ao Acúmulo de Sujeira (variam de 1% a 8%), Cabeamento CC e CA (variam de 0,5% a 10%) e as perdas associadas ao Inverso (variam de 2,5% a 5%).

Para calcular o Rendimento Global, devemos pegar cada termo de perda e subtrair de 100% e os resultados são multiplicados pelos fatores de perda. Para a presente pesquisa foi considerada as perdas conforme Tabela 1.

Tabela 1: Título da tabela contendo as informações que à identificam

Parâmetro	Perda (%)
Perdas de Temperaturas	11,5
Incompatibilidade Elétrica	1,5

Acúmulo de Sujeira	4
Cabeamento CC	0,75
Cabeamento CA	0,75
Inverso	3,75

Cálculo da Quantidade de Painéis

Após o cálculo da Potência Total dos Painéis é necessário calcular a quantidade de placas a partir da equação 4. Para isso, é necessário definir a qual placa será utilizada. Em sistemas residenciais normalmente utiliza-se um painel de 260w/265w/275w com 1,60m de altura e 1,0m de largura.

$$Qtd_{pain\'eis} = \frac{Pot\`encia\ Total_{pain\'eis}}{Pot\`encia\ Total_{pain\'eis}} \tag{4}$$

RESULTADOS E DISCUSSÃO

A irradiação solar diária média (kwh/m².dia) foram obtidos junto ao site do CRESESB CEPEL para a coordenadas geográficas Latitude 20,026516°S e Longitude 40,74333° O, conforme Tabela 2. Os dados sumarizados na tabela a seguir mostram que o maior e o menor valor de irradiação foi de 6,04 e 3,49 kWh/m².dia para os menos de fevereiro e junho, respectivamente.

Tabela 2: Valores de irradiação em kWh/m² dia durante os meses do ano.

Mês	Irradiação (kWh/m².dia)	Mês	Irradiação (kWh/m².dia)
Janeiro	5,79	Julho	3,56
Fevereiro	6,04	Agosto	4,19
Março	5,02	Setembro	4,57
Abril	4,39	Outubro	4,61
Maio	3,75	Novembro	4,65
Junho	3,49	Dezembro	5,38
	Média		4,62

Energia de Geração

Considerando que a ligação é monofásica e o consumo médio de 549,42 kwh o consumidor deverá pagar no mínimo 30 kwh. Para dimensionar a Geração de Energia que o sistema deve gerar, deve-se subtrair o valor mínimo a ser pago do consumo médio de kwh, ou seja $Energia_{geração} = 549,42 - 30 = 519,42 \, kwh$. Dessa forma, Energia de Geração de kwh/mês em kwh/dia é de17,314.

Perdas de Energia:

A Tabela 3 apresenta dos resultados do cálculo das perdas de energias pela: temperatura; incompatibilidade elétrica; acúmulo de sujeira; cabeamento CC e CA e Inverso. Os resultados

apontam que as perdas variaram de 0,885 a 0,9925 na temperatura e nos cabeamentos, respectivamente.

Tabela 3: Perda de energia calculada.

Parâmetro	Perda de Energia Calculada
Perdas de Temperaturas	0,8850
Incompatibilidade Elétrica	0,9850
Acúmulo de Sujeira	0,9600
Cabeamento CC	0,9925
Cabeamento CA	0,9925
Inverso	0,9625

Quantidade de Painéis Solares

A quantidade de painéis solares calculadas pela expressão 4 foi de 18 unidades considerando a placa de 265 W. Portanto, a potência total dos 18 painéis foi de 4,77 kWp.

É importante destacar os cuidados em relação a instalação e a manutenção das placas solares, como: (I) a ângulo de inclinação da placa, no presente estudo foi considerado fixo ao longo do ano, igual a latitude, isso é de 20°; (II) a placa deve ser voltada para **norte**; (III) quase não necessitar de manutenções.

Por fim, vale dizer que a vida útil das placas solares é de 25 a 30 anos, tendo baixo custo de implementação, isso é, o retorno do investimento é rápido pois tem economia imediata na conta de energia. Amém disso, o imóvel valoriza-se e as placas solares são sistema sustentável que não agride a natureza (ANEEL,2011).

CONSIDERAÇÕES FINAIS

A partir do objetivo do presente artigo que foi dimensionar um sistema fotovoltaico de uma propriedade rural situada em Santa Maria de Jetibá, ES, é possível concluir que:

- O consumo médio mensal da residência foi 549,42 kW/mês;
- A irradiação adotada no projeto foi de 4,62 kwh/m². dia;
- O sistema projetado para atender a demanda da resid~encia necessitou de 18 placas solares de 256 W.

Como sugestão para trabalhos futuros, sugere-se a considerar o valor da conta de energia antes e após a implementação das placas solares, bem como calcular indicadores econômicos para averiguar a viabilidade financeira do sistema.

REFERÊNCIAS

ANEEL. Audiência Publica nº 42/2011. 2011 A. Disponível em www.aneel.gov.br. Acesso em 20 de outubro de 2022.

ANDRADE, Antonio Fernando Carvalho de et al. Produção de energia e desenvolvimento econômico: uma análise dos casos do Brasil e de Sergipe. 2016.

BRONZATTI, Fabricio Luiz; IAROZINSKI NETO, Alfredo. Matrizes energéticas no Brasil: cenário 2010-2030. Encontro Nacional de Engenharia de Produção, v. 28, p. 13-16, 2008.

EPE. Balanço Energético Nacional 2021: Ano base 2020 / Empresa de Pesquisa Energética. – Rio de Janeiro: EPE, 2021

CRESESB/CEPEL. Disponível em < http://cresesb.cepel.br/index.php#data Acessado em: 20 out. 2022.